MATH 732: CUBIC HYPERSURFACES

DAVID STAPLETON

1. Some Classical Constructions

These notes are based on [Huy23, §1.5]. See the disclaimer section.
Example 1.1. Given a smooth cubic hypersurface:

$$
X \subseteq \mathbf{P}^{n+1}=\mathbf{P}
$$

we "saw in an exercise" that the maximum dimension of a linear subspace $\Lambda \subseteq X$ is $n / 2$. It is not too hard to give examples with equality. For example, when n is even the Fermat cubic:

$$
X=\left(x_{0}^{3}+x_{1}^{3}+\cdots x_{n}^{3}+x_{n+1}^{3}=0\right) \subseteq \mathbf{P}
$$

contains the linear subspace:

$$
\Lambda=\left(x_{0}+x_{1}=x_{2}+x_{3}=x_{n}+x_{n+1}=0\right) .
$$

This has codimension $n / 2+1$ in \mathbf{P} (so has dimension $n / 2$). When n is odd, X contains the $(n-1) / 2$ plane

$$
\left(x_{0}+x_{1}=\cdots=x_{n-1}+x_{n}=x_{n+1}=0\right) \subseteq X .
$$

Example 1.2. If $\mathbf{P}=\mathbf{P}(V)$ and $\Lambda=\mathbf{P}(W)$, then the rational map linear projection from Λ

$$
q_{\Lambda}: \mathbf{P} \rightarrow \mathbf{P}(V / W)=\mathbf{P}^{\prime}
$$

is induced by the linear quotient $q_{W}: V \rightarrow V / W$ and sends a one-dimensional subspace $\lambda \subseteq V \mapsto q(\lambda)$ as long as $\lambda \nsubseteq W$. I.e. the base locus of this map is $\Lambda \subseteq \mathbf{P}$. For a one-dimensional subspace $\lambda \in \mathbf{P} \backslash \Lambda$, the closure of the fiber of q_{Λ} at λ is the linear subspace $\mathbf{P}(W+\lambda) \subseteq \mathbf{P}$. Likewise, any linear subspace of \mathbf{P} having dimension $\operatorname{dim}(\Lambda)+1$ that contains Λ is the closure of a fiber of p_{Λ}. The closure of the graph of p_{Λ} :

$$
\Gamma \subseteq \mathbf{P} \times P(V / W) .
$$

is the blow-up of \mathbf{P} at Λ. If $\mu: \Gamma \rightarrow \mathbf{P}$ is the blow-up map, then the projection:

$$
\Gamma \rightarrow \underset{1}{\mathbf{P}(V / W)}
$$

is associated to the complete linear system $\left|\mu^{*} \mathcal{O}_{\mathbf{P}}(1) \otimes \mathcal{O}_{\mathbf{P}}(-E)\right|$. The map $\phi: \Gamma \rightarrow \mathbf{P}(V / W)$ corresponds to the projective bundle:

$$
\Gamma \simeq \mathbf{P}\left(\mathcal{O}_{\mathbf{P}(V / W)}(1) \oplus \mathcal{O}_{\mathbf{P}(V / W)}^{\oplus \operatorname{dim} W}\right)
$$

For a smooth cubic hypersurface $X=(F=0)$ containing Λ, the cubic equation pulls back to a section

$$
\mu^{*} F \in \mathrm{H}\left(\Gamma, \mu^{*} \mathcal{O}(3)\right)
$$

As X has multiplicity 1 along Λ, so $\mu^{*} F$ gives rise to a section of

$$
\mu^{*} F \in \mathrm{H}\left(\Gamma, \mu^{*} \mathcal{O}(3) \otimes \mathcal{O}(-E)\right)
$$

This corresponds to the blowing up of X at Λ. From the perspective of the projective bundle ϕ, this gives a section of

$$
\mathcal{O}_{\phi}(2) \otimes \phi^{*}\left(\mathcal{O}_{\mathbf{P}(V / W)}(1)\right),
$$

which is to say that $\mu^{*} F$ is a family of quadrics in the fiber of Γ. Explicitly, given a $\operatorname{dim}(\Lambda)+1$ plane Pi containing Λ, we know that (if Π meets X properly) Π meets X at a degree 3 hypersurface in Π :

$$
\Pi \cap X=Q_{\Pi} \cup \Lambda \subseteq \Pi .
$$

The quadric Q_{Π} is called the residual quadric.
If we let $\mathcal{E}=\mathcal{O}_{\mathbf{P}^{\prime}}(1) \oplus \mathcal{O}_{\mathbf{P}^{\prime}}^{\oplus} \operatorname{dim} W$, then $\phi_{*} \mu^{*} F$ gives a section of $\operatorname{Sym}^{2}(\mathcal{E})(1)$, or equivalently a symmetric homomorphism:

$$
\phi_{\star} \mu^{*} F: \mathcal{E}^{*} \rightarrow \mathcal{E}(1) .
$$

We have shown that X is birationally a quadric bundle over $\mathbf{P}(V / W)$. The singular fibers correspond to when the map $\phi_{*} \mu^{*} F$ becomes singular, which is when $\operatorname{det}\left(\phi_{*} \mu^{*} F\right)=0$. This is a section of the line bundle

$$
\operatorname{det}(\mathcal{E}) \otimes \operatorname{det}(\mathcal{E}(1)) \simeq \operatorname{det}(E)^{2} \otimes \mathcal{O}_{\mathbf{P}^{\prime}}(\operatorname{dim} W+1) \simeq \mathcal{O}_{\mathbf{P}^{\prime}}(\operatorname{dim} W+3) .
$$

Example 1.3. If we project from a point on a smooth cubic hypersurface (so $\operatorname{dim} W=1$) this gives a double cover of $\mathbf{P}(V / W)$ that is branched along a degree 4 hypersurface. (Likewise, if we project from a line this gives a conic bundle over $\mathbf{P}(V / W)$ that is branched along a quintic.)

Exercise 1. Let

$$
X=\left(x_{0}^{3}+\cdots+x_{n+1}^{3}=0\right) \subseteq \mathbf{P}
$$

be an even dimensional Fermat cubic hypersurface and let

$$
\Lambda=\left(x_{0}+x_{1}=\cdots=x_{n}+x_{n+1}=0\right) \subseteq \mathbf{P} .
$$

Show that the corresponding quadric fibration is singular along the union of $n / 2+1$ hyperplanes and the cubic hypersurface:

$$
X \cap\left(x_{0}-x_{1}=\cdots x_{n}-x_{n+1}=0\right)
$$

thought of as a subset of $\mathbf{P}^{n / 2}$.
Example 1.4. If $\mathbf{P}^{2} \simeq \Lambda \subseteq X \subseteq \mathbf{P}^{5}$ is a cubic fourfold that contains a plane then we can use quadric fibration to prove that X is unirational (i.e. X admits a dominant map from projective space). To do this, we choose an auxiliary $\mathbf{P}^{3} \subseteq \mathbf{P}^{5}$. This meets X at a smooth, rational cubic surface, which double covers \mathbf{P}^{\prime}. The base change of the quadric bundle to the cubic surface is rational because it's a quadric bundle over a rational surface with a point. This gives a degree 2 unirational parametrization.
Example 1.5 (Rational Hypersurfaces). If X is a smooth, even dimensional cubic hypersurface of dimension n that contains two complementary $n / 2$-dimensional linear subspaces $\Lambda_{1}, \Lambda_{2} \subseteq X$ that span \mathbf{P}, then X is even rational! The third point map:

$$
\Lambda_{1} \times \Lambda_{2} \rightarrow X
$$

where a pair of points $\left(\lambda_{1}, \lambda_{2}\right)$ maps to the third point on the line $\overline{\lambda_{1} \lambda_{2}} \cap X$.

Example 1.6 (A general unirationality construction). We know cubic surfaces are rational. This lets us inductively prove cubic hypersurfaces are rational. Consider a smooth cubic hypersurface X with two hyperplane sections Y_{1} and Y_{2}. Then the third point map

$$
Y_{1} \times Y_{2} \rightarrow X
$$

gives a dominant map to X. As Y_{1} and Y_{2} are unirational, the product is also unirational, which does the job.

Example 1.7 (Rationality of nodal cubics). Suppose that $X \subseteq \mathbf{P}$ is a reduced, irreducible cubic with a double point. Projection from this point gives a map

$$
X \rightarrow \mathbf{P}^{n}
$$

of degree 1 , which shows the cubic is rational. We can likewise parametrize the points on a cubic via a third point construction. Let $\mathbf{P}^{n} \simeq \Pi \subseteq \mathbf{P}$ be a linear subspace that does not contain the double point $p \in X$. Then, there is a rational map:

$$
\Pi \rightarrow X
$$

that sends a point $y \in \Pi$ to the final point on the line $\overline{p y} \cap X$.

Moreover, if $p \in X=(F=0)$ is an ordinary double point and is the only singular point, we can understand what gets contracted by the birational map $X \rightarrow \mathbf{P}^{n}$. For simplicity assume that $p=[0: \cdots: 0: 1] \in \mathbf{P}$. Then, we can expand the equation F as

$$
F=Q\left(x_{0}, \ldots, x_{n}\right) x_{n+1}+G\left(x_{0}, \ldots, x_{n}\right)
$$

where $Q\left(x_{0}, \cdots, x_{n}\right)$ is a non-degenerate quadric and G is a homogeneous equation in one fewer variables. (Note that $x_{n+1} \neq 0$ at p.) The complete intersection $D=(Q=G=0)$ is a divisor in X, which is a cone over a subvariety in $\mathbf{P}^{n}=\left(x_{n+1}=0\right)$. The assumption that X is smooth away from p implies this complete intersection is smooth in \mathbf{P}^{n}. If

$$
X^{\prime} \subseteq \mathbf{P} \times \mathbf{P}^{n}
$$

is the graph of this birational map then the projection $X^{\prime} \rightarrow \mathbf{P}^{n}$ corresponds to the blow-up of the $(2,3)$ complete intersection variety, and the projection $X^{\prime} \rightarrow \mathbf{P}$ corresponds to the contraction of the quadric $Q=0$. To be more explicit: let X be a cubic with a unique singularity that is an ODP:
(1) If X is a surface, then it corresponds to the blow-up of 6 points in \mathbf{P}^{2} that are the intersection of a conic and a cubic, followed by the contraction of the conic.
(2) If X is a cubic threefold, then it corresponds to the blow-up of a canonical genus 4 curve $C \subseteq \mathbf{P}^{3}$ followed by the contraction of the unique conic that contains it.
(3) If X is a cubic fourfold, then it corresponds to the blow-up of a $(2,3)$ complete intersection K3 surface $S \subseteq \mathbf{P}^{4}$, followed by the contraction of the unique quadric containing it.

Example 1.8. It is also interesting to ask: What is the maximal number δ of ordinary double points a cubic hypersurface can have? Roughly speaking, this should correspond to a normal crossing singularity of $D(3, n)$ with δ crossings. For cubics this is known to be:

$$
\binom{n+2}{\lfloor(n+1) / 2\rfloor} .
$$

For example, when $n=2$ this gives 4 and when $n=3$ we get 10 . These are uniquely given by the famous Cayley surface:

$$
\left(x_{0} \cdots x_{3}\left(\frac{1}{x_{0}}+\cdots+\frac{1}{x_{3}}\right)=0\right) \subseteq \mathbf{P}^{3}
$$

and the Segre cubic threefold:

$$
\left(\sum_{i=0}^{5} x_{i}^{3}=\sum_{i=0}^{5} x_{i}=0\right) \subseteq \mathbf{P}^{4} \subseteq \mathbf{P}^{5} .
$$

References

[Huy23] Daniel Huybrechts. The geometry of cubic hypersurfaces, volume 206 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2023.

